ite in HO

FROM HALFDOME TO CAMP CURRY

Yosem

Don Evans | 6x9 layout | 07/11/2018

What is it?

This document describes a 6-foot by 9-foot HO scale model railroad layout, created in the single car
garage walled off from the double garage to preserve temperature and humidity during the cold winters
and hot summers of Eagle, Idaho. The scale is HO, 1:87.1 ratio.

This layout is intended to incorporate some of the features of my favorite place on earth, Yosemite Valley,
California, USA. I have included such features as Vernal Falls, Merced River, Half Dome, Camp Curry,
campgrounds and a portion of the Awhanhee Hotel.

What is included?

[will attempt to give a comprehensive presentation of the entire layout, including images of each portion
of it, as well as close-ups of particularily interesting items.

The operation of the layout is largely handled by electronic devices. The motion and sound of the steam
engines is controlled by standard off-the-counter DCC hand held remote connected to a five ampere DCC
amplifier.

The operation of the turnouts can be handled two ways. Each turnout has a solenoid actuator integrally
installed, so that it can either be remotely switched, or can be manually switched at the turnout itself.
The remote operation of the turnouts is handled through a micro-processor called Arduino Uno. This
device collects desired turnout positions from a panel that contains a toggle switch for each turnout, of
which there are sixteen. The status of each toggle switch is collected into an integrated circuit 16 bit
shift-register in the switch panel, and then shifted out serially on a pair of conductors, to be delivered
into the micro-processor. This occurs continuously at a very rapid pace so that when a switch is thrown
on the panel the change of status of that switch is instantly recognized by the micro-processor.

When the processor receives the status information from the toggle switch panel, it relays that
information, again by serial communications, to a waiting shift-register in another panel that contains
Yellow/Green LED lights indicating the status of each of the sixteen turnouts on the layout.

Simultaneously, the micro-processor compares the new status of the toggle switches with a previously
memorized status. If there is a change of one or more toggle switch positions, the new information is
also output to a set of turnout current drivers, which will then output the appropriate polarity pulse of
current to the solenoid of the targeted turnout.

To fully illuminate the electronics that I have just described, I will be including in this document, full
electronic schematics together with listing of the C-language code that I have written for the micro-
processor to execute.

All documentation will be available on my website: www.lazuli.com, by using the button named ‘Links’ in
the left side of the home page. This documentation will include this document, all schematic diagrams
for the electronics and the code written for the Arduino Uno and Nano micro-processors.

Now, let’s get started with an image showing the full extend of the layout. Remember that this layout is

housed inside a garage/workshop and the surroundings are not pretty!

PAGE 1

You can see that it is bounded on the
south long side by a sky image and
some far off snow covered mountains
just above the granite wall that
extends from Half Dome to your left
to another granite monolith.

THE NEXT SERIES OF IMAGES WILL SHOW THE VARIOUS FEATURES AND [WILL DESCRIBE
WHAT IS SEEN IN EACH OF THEM.

This image looks down upon the corner of the table
that emphasizes Camp Curry, with several camp
sites, a couple of log cabins and three tent cabins
to emulate those found in profusion in Camp
Curry.

This looks down upon a few of the camp sites,
including one that has Susan and Steve’s Airstream, all
shiny and bright!

PAGE 2

A closer look at a meadow with
some critters gamboling
around within it.

A shot of Vernal Falls and a view of the Merced River, crossed by a wooden trestle.

PAGE 3

Half Dome looking down upon
Camp Curry and environs.
Poetic licence allow the tracks
to run underneath traveling
through hand made wooden
portals.

,—-l-nk.\-!.;(s |

A different and much longer
wooden trestle crossing
the river and extending
over several tracks. This
trestle is two-way so
that the trains can pass
each other as they cross
the river.

PAGE 4

The road from Camp Curry that
ultimately disappears into the area
below Half Dome crosses a main
track and has active, working,
crossing gates. These gates are
operated by an Arduino Nano, a very
small micro-processor located under
the layout. Optical sensors are
located between ties upstream and
downstream of the crossing. These

sensors detect the arrival of an
engine from either direction. Upon detection, the blinking red warning lights start flashing and an
audible crossing bell begins to ring. Shortly thereafter the Nano activates two servo-motors that lower
the crossing arms. When the last car in the train passes over the crossing, the servo-motors are caused to
raise the arms and shortly after the lights cease flashing and the bell stops ring. Note the roof of a depot
in the picture.

Here we have a structure that
emulates at least a major portion
of the Awhanhee Hotel in
Yosemit Valley. The windows all
have interior scenes glued in place
behind the glass. A few patrons of
the bar are sitting outside
enjoying the wonderful scenery.

PAGE 5

Some hardy souls making the climb up the
precarious passage up the side of Half Dome. |
note that some of the boards have been kicked
askew?

PAGE 6

Now, we get to the electronics associated with this HO layout. All control features are handled through the
use of Arduino Uno’s, with the exception of the Crossing Gates that utilize a smaller Arduino Nano.

As mention in the opening statement, a toggle switch panel has been prepared with a toggle switch
representing each of the sixteen turnouts. The switches are located on the panel according to their
turnout location on the image of the layout. The direction of a turnout, either straight through or
turnout, is determined by the direction of it’s associated toggle switch.

i

The layout is reasonably faithfully portrayed in the black lines denoting tracks. Now, having the toggle
switches allows the Arduino Uno responsible for activating each turnout, to obey the wishes of the
Operator. In order to accomplish this, the toggle switch positions are gathered into a digital chip called a
shift register. The sixteen bits of data would look something like: 1001110101110101, With a 1 denoting a
straight through turnout position and a o indicating a turnout position. Sixteen bits of data would
normally require at least an eighteen wire cable to get the information from the panel to the micro-
processor. I have simplified things by entering the data into the digital shift register in ‘parallel’ meaning
each toggle switch position is separately entered simultaneously into the register. The data is then
shifted out bit by bit and sent down a single pair of wires to land in a similar shift register at the Uno
location. The difference in the two registers is that one enters data in parallel and shifts out serially,
while the receiver registers enters data serially and extracts the data in parallel. Considered a matching
pair.

PAGE 7

This image shows the electronics associated with the
turnout operations. The small board in the lower right
corner is the Arduino Uno. The larger printed circuit
board next to the Uno is a circuit containing four
channels of serial data input/output. One of the channels
receives the serial data from the turnout toggle switch
panel. Another channel outputs serial data to a register
that converts that serial information into parallel data
that can then be inserted into the relay bank shown by the
blue rows of relays in the upper part of the image.

e - -
anpbpgond

g anBpoea O

»
r

)
N

It is not desirable to apply a continuous source of energy
to each turnout mechanism, as it is wasteful and heat
producing. So, to activate a turnout mechanism, a short,
powerful ‘pulse’ of energy is sent to the mechanism and
this quickly causes a solenoid attached to the turnout to
activate. Each mechanism consists of two coils of wire
forming an electro-magnet. Pulse one of the coils and the
turnout moves to straight through, pulse the other coil
and the movement is to turnout. The circuits that provide
these pulses are the small green boards along each side of
the drawer. A pulse is sent out only if and when a toggle
switch changes position. So long as the toggle has not changed, no action is required and no pulses are
output, thereby saving power and reducing heat to a minimum.

The position of each toggle switch must also be displayed to the operator and this is accomplished by yet
another serial output channel on the large printed circuit board. The switch position data is displayed on
the following panel:

The LED lights don’t show well in the image,
but some can be seen. Green indicates a
straight through condition of the turnout and
Yellow is used for the sideways turnout
condition. Each turnout has a pair of LEDs,
Green and Yello, with only one of the colors
displayed at any given time. This sixteen bits
of data is serially transmitted from the
electronics in the foregoing image, and
extracted in parallel so as to provide the
necessary information for each turnout LED.

PAGE 8

On this HO layout, the tracks are energized by a DCC digital encoded electrical waveform. This allows the
operator of the system to control up to six engines simultaneously without any interference between
engines. DCC allows speed changes, direction of motion changes, even whistles to be blown, bells rung.
All completely independent of each other. I decided to partition the entire track arrangement into
individual blocks. That is, I have cut the track at specific points so as to allow detection of an engine
when it enters that block. The DCC signal is the same for each block, but each block is provided that
DCC signal through a separate path allow me to detect the presence of an engine as it enters each block.

This panel receives serial data from an

additional Arduino Uno, causing a Red
LED to illuminate when an engine is
detected in the block. There are twenty-

two blocks and this image shows engines
in two of the blocks. Here again, twenty-
two bits of data would require a very

large, 24 wire wide, cable. However, by
serializing the data, a pair of wires is all

that is required.

The electronics required to accomplish

block occupancy detection accomplishes
the task by detecting the DCC current
feeding the engines motor. No engine in

a block, no current detected. Engine enters block, consumes energy to drive its motor, thereby causing
current to flow and that current is detected by passing the feed wire for the block through a magnetic
toroid or coil of wire that feeds a sensitive circuit
detecting occupancy when current flows through the
feed wire. This method does not detract from the
power running the engine and so is free of heating.

The electronics required to detect block occupancy is
shown in this image. The Uno that does the heavy
work is located in the lower left of the image. The
current sensor elements for each of the twenty-two
blocks are those blue objects in the upper part of the
image. Incidentally, the little board inside the plastic
envelope in the image is an Arduino Nano, showing
how much smaller it is than is the Uno.

PAGE 9

A N -
S NEMLHNO WK

AERCRAES

This image shows the block extents and
includes the letter identifying each block as also

The Block Occupancy circuits all have to be

brought from the individual blocks to a

common point so as to pass the DCC signal
through a toroidal current sensor. This image
shows the 24 leads coming into terminal blocks
and then leads were extended through the

current sensors shown at the bottom of the

image.

shown in the image above on the terminal
strips.

The lower image describes the Block by Letter,
and the associated pin number in a 26
conductor cable running to the electronics
shown in earlier images.

26 conductor cable connector layout

nhe. V...[7r R P OMK H X E B Gnd
26 24 22 20 18 16 14 12 10 8 6 4 2

25 2321 19171513119 7 5 3 1
W US QY NL J GFD A Vcc

PAGE 10

These images show the ‘man-hole’ available after removing parts of the scenery. Because of the rectangular
nature of the layout, some significant areas cannot be reached from the outer periphery.

~ A view of the Arduino Nano board that is
7
v , responsible for the crossing gate electronics.

QPIN 2
ABLEPIN 3
PPIN 4

e g This is located under the layout and accessible
ATEPIN 7 7 ’

only by crawling, sliding, otherwise getting down
on the floor!

This is the HP Laptop that goes with the layout.

It is used to download programs into the Arduinos,
and also allows monitoring any feedback from the
downloaded software.

PAGE

This completes the description of the various elements of my HO Yosemite! We now have the task of
presenting the wiring diagrams for all those electronic circuits. The diagrams have the official name of
‘schematics’. I will also give images of parts of the C language code inserted into the Arduinos. All the
schematics and all the code is available on my website, www.lazuli.com.

This image shows the menu buttons on my website home page. Just click on the “Links” button to switch to

the web page with all the various downloadable information related to my

contact us

HO Yosemite

Thanks for your interest and know that I will ultimately want to find an appreciative home for this:

HO Yosemite layout!

PAGE 12

http://www.lazuli.com/

Appendix: C Language code for use in the Arduinos utilized in my HO Yosemite: These are merely screen
grabs of the code while in the Arduino APP, available at https://www.arduino.cc/en/Main/Software,
necessary for communicating from the desktop computer to/from the Arduino Uno or Nano. The actual
code will be found for download from my website: www.lazuli.com.

ff Crossing Gate Controller, wersion 1.10 Thu July 14, 2017 S:12AM
#include <PinChangeInt.h>
#$include <Servo.h> // servo library

/7 Hote that this likrary disakles PWM con
S/ pins 9 and 10!

Servo myservol; J/ serve control object
Servo myservol; [/ servo control object

/* This wersion is designed for the NAND.
This code utilizes three PinChange Interrupts.

1. On pin 2,
This ihterrupt routine first checks to see if the Disakle pin is c
rrupt is ignored, because that indicates the train is leawir gated block.
If not co ed, it sets the START flag, for the loop() to use to set the GRATE state,
and to set the delta t to then set the ABMS state.

this inte

2. On pin 3, the Disabkle signal resets the START flag.

3. On pin 4, the Stop signal indicates that koth stop senscrs are uncoversed and
sets the S5TOP flag, for the loop() to use to stop the ARMS state and start the delta t©
to then stop the GATE state.

by setting/checking flags to indicate already serviced.
4. Flasshers are on pins 5 and €. The Serves are on pins 9 and 10.

5. The photo transistors are short-circuit with light, open-circuit when cos
START trige cocurs when phototransistor becomes covered, the ore a RISING interrupt.
Disable trigger is the same. The STOP trigger occurs when both stop detectors are uncovered,
therefore a FALLING interrupt.

#define STARTPIN 2

#define DISABLEPIN 3

#$define STOPPIN 4

#define FLASHONE 5

#define FLASHIWO €

#define GATEPIN 7

#defins RRM1 9

$#define ARMZ 10

boolean wolatile STARTFlag = false;
boolean wolatile STOPDelayFlag = false;
bkoolean STOPFlag = false;

boolean GATEState = false;

booclean ArmUpState = false;

booclean ArmDownState = false;

PAGE 13

lLIhis file is intend nsmission b
and the Turnout LED Panel and Turnout

in utilize the same pin

figuration, the only
Otherwise all pin

pLion Wl the serial pin is chan ut to Input.

iniations and usesages are identical.

Three pins are alloc de control functions: Pin 2 to switch on/off the

Pin 13 will illuminate the internal LED indicating the status of Pin 2. Pin 3

the scanning p

a4

Both Pins 2 and 3 are set up so that when pulled LOW they enable thei

-
boolean setlUp = false; // make true if you want to run through the turnout exercise?
boolean scanFlag = false;

byte setUpPin = 2;

byvte scanPin = 3;

byvte setupLED =
byvte channell H
bvte channell = 5;
bvte clockPin H
bkyvte latchPin = 10;
byte serialPin = 11;
byte channel &
byte channel B
byte channel C
byte channel D
unsigned int dataReadIn = 0;

unsigned int previousData = 07

unsigned int dataTemp;

int z = 07

// Code run during "setup()' will run only once at the beginning and never again unless 'reset'.

i
~1
L

i
]

a;
1;
2;
3;

woid setup() |
f/configure pin2 as an input and enakle the internal pull-up resistor to test for "seclp'.
pinMode (setUpPin, INFUT_FULLUF)
pinMode (scanPin, IWFUT_FULLUF):
pinMode {(setuplLED, COUTEUT);
int sensorVal = digitalRead(setUpPin);
1f (senscrVal == HIGH) {
digitalWrite (setuplED, LOW); setUp = false;
1 =2lse |
digitalWrite (setuplED, HIGH); setlUp = true;
}
sensorVal = digitalRead{scanPin);
if ({sensocrVal == HIGH) {
scanFlag = false;
1 =lse |
scanFlag = trus;
}
Serial.besgin{9600);
Serial.println(™......... TogglesTolEDS-11-14-16. . cucuuununansnnnaannnan "
// Set all used pins to OUTFUI (serialPin will be set to INPUT to read in toggles.

PAGE 14

l' This code sends out three

to the
¥ Occupancy LED panel. Medium and High.

¥ The

order: first kit out i he Low byte, and so on,

0 e being the last kit out.

Jccupancy detection hardware should foll

¥ The

int i = 0;
byte dataWordLow = 171;
byte dataWordMedium = 2267
byte dataWordHigh = 157;
int & = 7;
int B = &;
int Clk = 9;
int Latch = 10;
int Serialfut = 11;
void setup() |
S/ put your setup code herse, to run once:
Serial . .begin(9c00)
Serial.println{™.ecssss Occupancy LEDS 0l...csssasssssansnsaanannnns e
for {int i=k; i<=Serialfut; i++){
pinMode (1, CUTEUT):
1
digitalWrite (4, HIGH);
digitalWrite (B, HIGH);
digitalWrite (Clk, LOW) ;
digitalWrite (Latch, LOW)
digitalWrites (SerialOut, LOW) ;
}
violid loop() {
S/ put your main code here, to run repeatedly:
delayMicroseconds {(10) ;
digitalWrite (A, LOW) ;
digitalWrite (B, LOW) :
delayMicroseconds (10} ;
sendfut{ dataWordLow)7
sendfut { dataWordMedium) ;
sendfut{ dataWordHigh)»
latchIt();
digitalWrite (A, HIGH);
digitalWrite (B, HIGH);
delay(l0);
}
// Boutine to clock the data in each bit...
void clockIt(){
delayMicroseconds (5)
digitalWrite (Clk,HIGH) ;
delayMicroseconds (9)
digitalWrite (Clk, LOW);

Cecupancy_LEDs_01

PAGE 15

Now for some examples of the Electrical Schematic Diagrams that I created in a Drawing package called EAGLE,

available for free download at www.eagle.com.

EAGLE Schematic
Red Brown
B G oan
G een Bl
1 P s «
LPT20A CH=akke LPTE0A
7 ST T | ST
Start T2 | i T& | ‘Start
Bl
Beown Bl Red
Grssnn
Fin 4 Fin & Fin & Fin 3
EAGLE Schematic
3
- Pin Heagers
— L=B LK - riging edge to Shift data in
; Tt Latch - Pules HIGH, falling edge to load pacaliel register
Swioc LED Power
Serial cabk lnputs,
H Voc on left booking
= at board edge.
GHD
(==}
[favcad
T
Oriock
2 cincuitz
EIMK 24 LEDs, 5y3 . Rl

each indicating
he OCCepancy

]
facct:) H
4 S
oL P it Two
T 40504
3 Dus 432 h /

of 3 rail block, — 2

-] q_an: h
-] M
= 1230
.l 10] Serial [a

8 AGSOM

Bl owad

1 ~lg oL
_ = el
IZ2F
EVT ot
GHE
EAGLE Schematic

15 togg le switches,
difwe 16 in puts.

Cnder same as LECs.

[}
g
Fin Headeis te3 XIn}

1C1

PO SERMIS

=T
fv

MEE

Serial cable laputs,

TALESTAN

LK - falling edge to latch OR shift data in 8 oo on eft, koking
Latch - LW 10 shift, HIGH to paraliel lad. = at boamd edge:
(el
23T
- 0
- 22l
I YT A kl .
N e Cicuit Qe
5TRaa 405N .
- Ol
g L
9 10 vial Cwt

PAGE 16

http://www.eagle.com/

EAGLE Schematic

Ll
g
Pin Headers u
il I b 158 icL 2 .
1 _21 _13 qu SER 14 = Sedal cable Inputs
- e
ol E} H n Ve
4 R [T
o l 3 gg e
15 circuits -
& E 1
diive 16 pairs -tz = gr Ao ek
of LEC=s, =ach -1z 1 <8
pair Green for 1= on '&‘ o
Thiowgh diection, :jo T-q Circuit Cng
At for tymout -
divection. i
iectian . = Laten
=
-l 15
[15 Giownd
o '
-
-l 13
. E Sedial In
=
HSE
o
=GNk
EAGLE Schematic
=]
%)
= Ll
Fin Headar:
GG LSE 121 g M 8
-l 15 o0 SER 14 = Seiial cable Inputs
F 1
B
: 2 H gc ey Wee
- ; i g0 s foe
-1 GE
-l s 1 oF nong L <lock
.l e
] T
1= an T
110 a 1z L | CircuitCne
= an @ ol
24 circuits - L US7Haz
diive 23 = FALG595N Latch
Zrccupancy -1
LELC: -T=
-t 5 1 o osen R .
. 11c Serial In
-]l kS s
18 ER [T
-5] o
-] GE
E\E’E : g’; T Ground
o] e Ell e
-z MSE
ol B 3 (o2
-
-l 4
-l 2
Z
-
-l
3]
%]
>
TALSSASN
o

PAGE 17

EAGLE Schematic

WCD

Fin Headers

=}
-
[}
m

151

MInnmg gEE

m
a

I|'a a.gg“._s:husmw

Ll
Yo
24 circuits
diive 23
[Cccupancy
Elx
C

[

Eg
T

|

LR

ks

Shift Module for input of Occupanciy Status

WD

400N

i
1A
Ty Rl 10 /Eﬁ*g

é ol w
] usvx3z A0SON .

g

winnmoaome |i

m
a

L)

FETTTITT S EITIT I TITITITINET

SHITD

e EEE R EE R e EEE R
c /

WA
[n)
[
LT T e

24
(m}

CLR

2

AD30N

N
T]

ALS1EEN
i}

on

MImAmpOEs

m
a

(oL

INH

SHITD
LR

TALS1EEN

l.//aosou
]
o

a[d o g o

ICIP [C3RCERCAP

Shift'Latch (Latch):

High to Shift Out

Lowr to Latch Data

Both active on rising edge of clock

Serial cakle Inputs

woe

Clack

Circuit Cnel

Latch

Serial Cut

Ground

...th..th..that’s all folks!

PAGE 18

